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Talk 1: Introduction to Matrix Groups and Examples of Them

1 Matrix Groups
Definition 1.1. A subgroup G ⩽ GLn(K)
which is also a closed Subspace is called a Ma-
trix Group or a K -matrix Group [Ba, Prop.
1.30]

Not all Groups of Matrices
are Matrix Groups!

Example 1.2. SLn is a Matrix Group

Definition 1.3. for a Vector x ∈ Kn the lenght
is defined as |x|=

√
(x1)2 + ... + (xn)2

Proposition 1.4. The following Statements
are equivalent: A is a linear Isometry,
Ax * Ay = x * y, AT ∗ A = In [Ba, Prop. 1.38]

Lemma 1.5. Isomn(R) = O(n) ⋉ Transn(R)
= {AT : A ∈ O(n), T ∈ Transn} [Ba, Prop.
1.39]

Lemma 1.6. SU(2) is a double cover of So(3)

Lemma 1.7. The Group Heis3 is not linear

2 Overview of Groups
Overview 2.1. .
GLn(K) = {A ∈ Mn(K) : det(A) ̸= 0}
SLn(K) = {A ∈ Mn(K) : det(A) = 1}
UTn(K) = {A ∈ GLn(K):A is upper triangular}
SUTn(K) = {A ∈ GLn(K):A is unipotent}
O(n) = {A ∈ GLn(R) : AT A = In}
SO(n) = {A ∈ GLn(R) : AT A = In, det(A) = 1}
U(n)={A ∈ GLn(C) : A∗A = In}
SU(n)={A ∈ GLn(C) : A∗A = In, det(A) = 1}

Transn(K) =
{ [

I t
0 1

]
: t ∈ Kn

}
Affn(K) =

{ [
A t
0 1

]
: t ∈ Kn, A ∈ GLn(K)

}
Isomn(K) =

{
f: Kn → Kn :f is an isometry

}
Example 2.2.
SO(2) =

{[
cosθ sinθ

−sinθ cosθ

]
: θ ∈[0,2π)

}
SO(3) can be imagined as all the proper
rotations of a Sphere

Exercise 2.3. Prove for that any Eigenvalue λ of a Matrix A ∈ U(n) |λ| =1

References
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Topology (of Matrix Groups)
by Friedrich Homann talk #2

Topology What is topology?

A topology Let X be a set and let τ ⊆ P (x). Then τ is called a topology if:

i) Both the empty set and X are elements of τ .

ii) Any infinite union of elements of τ is an element of τ .

iii) Any intersection of finitely many elements of τ is an element of τ .

examples:

• chaotic / trivial / indiscrete topology

• discrete topology

• standart topology

Topological spaces Def.: the pair of a set and a topology on that set. A
topological space is denoted (X, τ).

Open sets basic calculus notion: similar to open intervals.
Def.: U is an open set if and only if it is an element of the topology.
Therefore GLn(R,C) ⊆ Mn(R,C) can be open subsets.

Closed sets Def.: A set P is closed if and only if the complement is open.

Continuity Def.: Let (M, τM ) and (N, τN ) be topological spaces. Then a map
f : M → N is continuous if ∀ V ∈ τN : preimf (V ) ∈ τM .
Theorem: the composition of continuous maps is continuous.

example:

• Let S = {1, 2, 3, 4} be a set. τ = {Ø, {1}, {1, 2, 3, 4}} (easy to check:)
τ is a topology on S.

• Furthermore: {1} is a open set, {2, 3, 4} is a closed set.

• Let τ ′ = {Ø, S} be a different topology on S. Let f : (S, τ) → (S, τ ′)
be the identity map. Then f is continuous, but not its inverse, since
the preimage of {1} is not an open set with respect to τ ′.

Compactness basic calculus notion: closed & bounded ⇔ compact

Open cover Def.: If U is a family of open subsets u, then U is an
open cover of a set E if E ⊆

⋃
{u | u ∈ U}

example: U = {B1(M,N) | M,N ∈ Z}
Subcover Def.: V is a subcover opf U if V is a subset of U that also

covers E.
Def.: E is compact if every open cover U has a finite subcover V .
Compactness is preserved by continuous functions.
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Heine-Borel theorem: for any set S in Rn, S is closed and compact ⇔ S
is compact i.e. every open cover has a finite subcover.
examples:

• [a, b]

• closed balls of finite radius

• O(n) and SO(n)

non-examples:

• R (counterexample: U = {(−n, n) | n ∈ N}, finitely many elements
do not suffice)

• (0, 1) (counterexample: U = { 1
n | n ∈ N}, again, finitely many ele-

ments do not suffice).

Conectedness Def.: not disconnected

Disconnectednes Def.: E is disconnected if there are nonempty,
open and disjoint subsets of E such that the union of thos e subsets is E.
analogy/example: jigsaw puzzle
property: If f : C → f(C) is continuous and C is connected, then f(C) is
connected.
Therefore: a continuous function f : (0, 1) → (0, 0.5) ∪ (1.5, 2) is impossi-
ble. proof is left as an exercise/problem
example:

• R
• GLn(R) is disconnected because it has two disjoint components. The
matrices with positive and the matrices with negative determinants.

• GLn(C) is connected.

Homeomorphisms not homomorphisms
a.k.a. the donut = coffee mug part of topology
property: homeomorphisms preserve the topological structure.
Def.: f : M → N is a homeomorphism if f is bijective and continuous “in
both directions”.
examples:

• f : [0, 1] → [0, 2] (f could be x 7→ 2x)

• (0, 1) and R are homeomorphic.

exercise:

a) First find a homeomorphism between [0, 100] and [0, 1].

b) Then, find a homeomorphism between (0, 1) and R.
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Metric creates the notion of distance
has to meet certain properties:

i) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y

ii) d(x, y) = d(x, y)

iii) d(x, y)+ d(y, z) ≥ d(x, z)

A pair of a set S and a metric d denoted (S,d) is called a metric space.
Closely related: the notion of norm
examples:

• Euclidean metrix
√

(x1 − x2)2 + (y1 − y2)2 in R2

• taxicab metric |x1 − x2|+ |y1 − y2| in R2

• LP -metrics (|x1 − x2|P + |y1 − y2|P )
1
P in R2

possible norm on Mn(R): ∥A∥ = sup{|Ax| : x ∈ Rn, |x| = 1}
can be used to define a metric on Mn(R) (d(A,B) = ∥A−B∥)

Subspace topology induction of topologies on subsets
Def.: Let (M, τ) be a topological space, N ⊂ M ,
then τ |N := {u ∩N | u ∈ τ}.

Proof that τ |N is a topology is left as an exercise.
property: If N is an open set in M , then v is open in N if and only if it
is open in M .
examples: We can equip S1 ⊂ R2 with τstd.|S1
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