Talk 1: Introduction to Matrix Groups and Examples of Them

1 Matrix Groups

Definition 1.1. A subgroup $G \leq GL_n(\mathbb{K})$ **Overview** which is also a closed Subspace is called a Matrix Group or a \mathbb{K} -matrix Group [Ba, Prop. $SL_n(\mathbb{K}) =$ 1.30] $UT_n(\mathbb{K}) =$

Not all Groups of Matrices are Matrix Groups!

Example 1.2. SL_n is a Matrix Group

Definition 1.3. for a Vector $\mathbf{x} \in \mathbb{K}^n$ the lenght is defined as $|\mathbf{x}| = \sqrt{(x_1)^2 + \ldots + (x_n)^2}$

Proposition 1.4. The following Statements are equivalent: A is a linear Isometry, Ax * Ay = x * y, $A^T * A = I_n$ [Ba, Prop. 1.38]

Lemma 1.5. $Isom_n(\mathbb{R}) = O(n) \ltimes Trans_n(\mathbb{R})$ = { $AT : A \in O(n), T \in Trans_n$ } [*Ba*, *Prop.* 1.39]

Lemma 1.6. SU(2) is a double cover of So(3)

Lemma 1.7. The Group $Heis_3$ is not linear

2 Overview of Groups

Example 2.2. $SO(2) = \left\{ \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} : \theta \in [0, 2\pi) \right\}$

SO(3) can be imagined as all the proper rotations of a Sphere

Exercise 2.3. Prove for that any Eigenvalue λ of a Matrix $A \in U(n)$ $|\lambda| = 1$

References

[Ba] Andrew Baker: *Matrix Groups*.

Handout

Topology (of Matrix Groups) by Friedrich Homann talk #2

Topology What is topology?

A topology Let X be a set and let $\tau \subseteq P(x)$. Then τ is called a topology if:

- i) Both the empty set and X are elements of τ .
- ii) Any infinite union of elements of τ is an element of τ .
- iii) Any intersection of finitely many elements of τ is an element of τ .

examples:

- chaotic / trivial / indiscrete topology
- discrete topology
- standart topology
- **Topological spaces** Def.: the pair of a set and a topology on that set. A topological space is denoted (X, τ) .
- **Open sets** basic calculus notion: similar to open intervals.

Def.: U is an open set if and only if it is an element of the topology. Therefore $GL_n(\mathbb{R},\mathbb{C}) \subseteq M_n(\mathbb{R},\mathbb{C})$ can be open subsets.

Closed sets Def.: A set P is <u>closed</u> if and only if the complement is open.

Continuity Def.: Let (M, τ_M) and (N, τ_N) be topological spaces. Then a map $f: M \to N$ is <u>continuous</u> if $\forall V \in \tau_N$: preim_f $(V) \in \tau_M$.

Theorem: the composition of continuous maps is continuous.

example:

- Let $S = \{1, 2, 3, 4\}$ be a set. $\tau = \{\emptyset, \{1\}, \{1, 2, 3, 4\}\}$ (easy to check:) τ is a topology on S.
- Furthermore: $\{1\}$ is a open set, $\{2, 3, 4\}$ is a closed set.
- Let τ' = {Ø, S} be a different topology on S. Let f : (S, τ) → (S, τ') be the identity map. Then f is continuous, but not its inverse, since the preimage of {1} is not an open set with respect to τ'.

Compactness basic calculus notion: closed & bounded \Leftrightarrow compact

Open cover Def.: If U is a family of open subsets u, then U is an <u>open cover</u> of a set E if $E \subseteq \bigcup \{u \mid u \in U\}$ <u>example:</u> $U = \{B_1(M, N) \mid M, N \in \mathbb{Z}\}$

Subcover Def.: V is a <u>subcover</u> opf U if V is a subset of U that also covers E.

Def.: E is compact if every open cover U has a finite subcover V. Compactness is preserved by continuous functions. Heine-Borel theorem: for any set S in \mathbb{R}^n , S is closed and compact $\Leftrightarrow S$ is compact i.e. every open cover has a finite subcover. examples:

- [*a*, *b*]
- closed balls of finite radius
- O(n) and SO(n)

non-examples:

- \mathbb{R} (counterexample: $U = \{(-n, n) \mid n \in \mathbb{N}\}$, finitely many elements do not suffice)
- (0,1) (counterexample: $U = \{\frac{1}{n} \mid n \in \mathbb{N}\}$, again, finitely many elements do not suffice).

Conectedness Def.: not disconnected

Disconnectednes Def.: E is <u>disconnected</u> if there are nonempty, open and disjoint subsets of E such that the union of thos e subsets is E. analogy/example: jigsaw puzzle

property: If $f: C \to f(C)$ is continuous and C is connected, then f(C) is connected.

Therefore: a continuous function $f: (0,1) \rightarrow (0,0.5) \cup (1.5,2)$ is impossible. proof is left as an exercise/problem example:

- \mathbb{R}
- $GL_n(\mathbb{R})$ is disconnected because it has two disjoint components. The matrices with positive and the matrices with negative determinants.
- $GL_n(\mathbb{C})$ is connected.

Homeomorphisms not homomorphisms

a.k.a. the donut = coffee mug part of topology

property: homeomorphisms preserve the topological structure.

Def.: $f: M \to N$ is a homeomorphism if f is bijective and continuous "in both directions".

examples:

- $f: [0,1] \rightarrow [0,2]$ (f could be $x \mapsto 2x$)
- (0,1) and \mathbb{R} are homeomorphic.

exercise:

- a) First find a homeomorphism between [0, 100] and [0, 1].
- b) Then, find a homeomorphism between (0,1) and \mathbb{R} .

Metric creates the notion of distance

has to meet certain properties:

- i) $d(x,y) \ge 0$ and $d(x,y) = 0 \Leftrightarrow x = y$
- ii) d(x,y) = d(x,y)
- iii) $d(x, y) + d(y, z) \ge d(x, z)$

A pair of a set S and a metric d denoted (S,d) is called a metric space. Closely related: the notion of norm examples:

- Euclidean metrix $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ in \mathbb{R}^2
- taxicab metric $|x_1 x_2| + |y_1 y_2|$ in \mathbb{R}^2
- L^{P} -metrics $(|x_1 x_2|^{P} + |y_1 y_2|^{P})^{\frac{1}{P}}$ in \mathbb{R}^2

possible norm on $M_n(\mathbb{R})$: $||A|| = \sup\{|Ax| : x \in \mathbb{R}^n, |x| = 1\}$ can be used to define a metric on $M_n(\mathbb{R})$ (d(A, B) = ||A - B||)

Subspace topology induction of topologies on subsets

Def.: Let (M, τ) be a topological space, $N \subset M$,

then $\tau|_N := \{u \cap N \mid u \in \tau\}.$

Proof that $\tau|_N$ is a topology is left as an exercise. property: If N is an open set in M, then v is open in N if and only if it is open in M. examples: We can equip $S_1 \subset \mathbb{R}^2$ with $\tau_{std.}|_{S_1}$